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Abstract. In this paper, three methods for describing the conformal transformations of the S-matrix
in quantum field theory are proposed. They are illustrated by applying the algebraic renormalization
procedure to the quantum scalar field theory, defined by the LSZ reduction mechanism in the BPHZ
renormalization scheme. Central results are shown to be independent of scheme choices and derived to
all orders in loop expansions. Firstly, the local Callan–Symanzik equation is constructed, in which the
insertion of the trace of the energy-momentum tensor is related to the beta function and the anomalous
dimension. With this result, the Ward identities for the conformal transformations of the Green functions
are derived. Then the conformal transformations of the S-matrix defined by the LSZ reduction procedure
are calculated. Secondly, the conformal transformations of the S-matrix in the functional formalism are
related to charge constructions. The commutators between the charges and the S-matrix operator are
written in a compact way to represent the conformal transformations of the S-matrix. Lastly, the massive
scalar field theory with local coupling is introduced in order to control breaking of the conformal invariance
further. The conformal transformations of the S-matrix with local coupling are calculated

1 Introduction

The S-matrix plays a fundamental role in quantum field
theory. It is always used to construct the cross section,
which can be checked by measurements in scattering ex-
periments. On the other hand, it is also one way of defining
quantum field theory. For example, in the Epstein–Glaser
scheme [1] the locality and the unitarity of the S-matrix
with local coupling determine the whole theory. Further-
more, symmetries of the S-matrix have been studied on
an abstract level [2,3].
In this paper, we study the conformal transformations

of the S-matrix in four dimensional flat space-time. When
the mass of particles can be neglected in high energy ex-
periments, the theory could be regarded as conformally
invariant at least in the classical approximation. Hence,
solving problems of this type is helpful to simplify cal-
culations or to find some identities in phenomenological
physics. At the abstract level, it also may improve our
knowledge of how to control anomalies or breakings in
quantum field theory.
The conformal transformations consist of the Poincaré

transformations, the dilatation transformation and the
special conformal transformation. In all versions of ordi-
nary quantum field theory the S-matrix has to be Poincaré
invariant, which has been verified in all experiments until
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now. But generally, the S-matrix is not invariant under
the dilatation transformation and the special conformal
transformation even if the corresponding classical theory
is conformally invariant. Some research has been carried
out on the breaking of the conformal invariance. For ex-
ample, in the massless φ4 theory constructed by a non-
perturbative approach in [4], the dilatation transformation
of the S-matrix is given by

n∑
i=1

(1 + pi∂pi
)Sn = βλ∂λSn, (1.1)

where γ, the anomalous dimension, does not contribute.
We will treat our problem in the approach of the al-

gebraic renormalization introduced in [5,6]; also see [7–
9]. It is based on the quantum action principle, relating
differentiation (or variation) on parameters (or fields) to
local insertions [10–13]. There are two guiding arguments
about the quantum action principle. Firstly, it is indepen-
dent of regularization schemes and renormalization pro-
cedures. Secondly, the perturbative quantum action prin-
ciple is satisfied to all orders of h̄. Hence they provide
strong power for the algebraic renormalization procedure.
Furthermore, the algebra of the global (local) Ward iden-
tity operators (or the cohomology of the Slavnov–Taylor
identity operator) can be realized by the differential (vari-
ational) operators. By imposing them as constraints on
local insertions, the global (local) Ward identities (or the
Slavnov–Taylor identity) can be constructed to all orders
in loop expansions.
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The global Ward identity for the conformal transfor-
mation of the vertex functional Γ [φ] can be defined re-
spectively by

WiΓ [φ] :=
∫
d4x δiφ(x)

δΓ [φ]
δφ(x)

, i = T,L,D,K, (1.2)

where the symbol T denotes translation, the symbol L de-
notes Lorentz rotations, the symbol D denotes dilatation
and the symbol K denotes special conformal transforma-
tion. If we redefine the global Ward identity operator Wi

by −Wi, the new global Ward identity operator exactly
forms a representation of the conformal algebra. The cor-
responding local Ward identity operator is given by

wi(x) = δiφ(x)
δ

δφ(x)
, i = T,L,D,K. (1.3)

It is not unique since we can add total derivatives without
changing the global Ward identity (1.2).
Although the approach of algebraic renormalization

does not rely on the choices of renormalization schemes,
we choose the BPHZ renormalization scheme in [14] to de-
fine the scalar field theory. The main reason is that in this
scheme insertions can be realized by the normal product
algorithm [10,15,16]. Then we can directly calculate inser-
tions in detail instead of using algebraic constraints. Fur-
thermore, we can use the Zimmermann identities defined
in the BPHZ renormalization scheme which relate inser-
tions with different subtraction degrees [15]. As a matter
of fact, however, the central results in this paper are in-
dependent of the scheme choices.
The S-matrix is given by amputation of the external

propagators of the Green function in the on-shell limit
in the LSZ reduction procedure, which suggests that the
breaking of the conformal invariance has to be first con-
trolled at the level of the Green functions. Actually, they
are determined by insertion of the trace of the energy-
momentum tensor which is related to the local Callan–
Symanzik equation. With this at hand, we can calculate
the Ward identities for the conformal transformations to
all orders in loop expansions. By integrating both sides,
the Callan–Symanzik equation [17,18] can be obtained
and directly related to the dilatation transformation. The
special conformal transformation of the Green function is
obtained in a similar manner. Afterwards, the conformal
transformations of the S-matrix can be calculated by ap-
plying the LSZ reduction formula.
Furthermore, the LSZ reduction procedure can be used

to construct the charges responsible for the conformal
transformations with the local Ward identities. For exam-
ple, the charges for the BRST transformations have been
obtained in [19,20]. The commutators between the charges
and the S-matrix operator are to represent the conformal
transformations of the S-matrix in the functional formal-
ism.
Moreover, we will introduce local coupling instead of

the coupling constant in order to control the conformal
breaking further. The massive φ4 model with local cou-
pling can be constructed by means of Poincaré invariance

and power-counting renormalizability. The local Callan–
Symanzik equation is also calculated and then applied to
the calculation of the conformal transformations of the
S-matrix.
In addition, we try to obtain the conformal transfor-

mations of the S-matrix in the massless case. In a general
sense, it does not exist due to infra-red divergence. But
in [4] by imposing some necessary physical postulates, the
S-matrix in the massless φ4 field theory can be proved
to exist in a non-perturbative way. Here, we directly as-
sume that it exists and that it can be obtained by taking
the massless limit of the S-matrix defined in the massive
model. Naturally, such a treatment is purely formal.
The plan of this paper is the following. In the sec-

ond section, a general procedure to solve our problem
is proposed. In the third section, we study the confor-
mal transformations of the S-matrix in the massive φ4

model defined by the BPHZ renormalization procedure.
In the fourth section, the conformal transformations of
the S-matrix are given by the commutators between the
S-matrix operators and the corresponding charges. In
the fifth section, the conformal transformations of the S-
matrix in the massive φ4 model with local coupling are
calculated. In our conclusion, some remarks are made to
suggest that the three methods employed in this paper are
also suitable for other models such as non-abelian gauge
field theories or supersymmetrical gauge field theories. In
AppendixA, the proof that the dilatation transformation
of the S-matrix goes without on-shell poles is presented.
In AppendixB, the problem whether the special confor-
mal transformation of the S-matrix has on-shell poles or
not is discussed up to two-loop order. In AppendixC, cur-
rent constructions and charge constructions via the local
Ward identities are presented in detail.

2 The general procedure for calculating the
conformal transformations of the S-matrix

In this section, we propose the general procedure by show-
ing an example of how to construct the dilatation trans-
formations of the S-matrix in the massive φ4 model.
The S-matrix is constructed from the Green function

by the amputation of its external propagators in the on-
shell limit. With the LSZ reduction procedure, the S-
matrix in the momentum space is given by the following
expression:

Sn = lim
pi∈P

(
−ir− 1

2

)n n∏
i=1

(pi2 −m2)Gn(p1, p2, · · · , pn),
(2.1)

where Sn(p1, p2, · · · , pn) is the n-particle scattering ma-
trix element; Gn(p1, p2, · · · , pn) is the n-particle general
Green function, but here we only take the connected part
which contains the factor δ4(p1 + p2 + · · · + pn); r is the
wavefunction renormalization constant; pi is the momen-
tum of ith particle, andm is the mass of the scalar particle;
P is the set defined by

P := {pi | p2i = m2; pi0 > 0; i = 1, 2 · · ·n}. (2.2)
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The wavefunction renormalization constant r is also de-
fined by

1
r
:= ∂p2 Γ̃2(p,−p) |p2=m2 , (2.3)

where Γ̃2(p,−p) is the two-point 1PI (one particle irre-
ducible) Green function.
The dilatation transformation of the S-matrix can be

defined by

WD Sn :=
n∑
i=1

(1 + pi∂pi
) Sn(p1, p2, · · · , pn), (2.4)

WD being the Ward identity operator for the dilatation
transformation. With the definition of the S-matrix, first,
we have to control the breaking of the dilatation invariance
of the Green function, namely we have to calculate

WD Gn :=
n∑
i=1

(1 + xi∂xi) Gn(x1, x2, · · · , xn). (2.5)

Second we shall treat the derivative of the following type:

∂pi {f(p1, · · · , pn) |P } , (2.6)

since the S-matrix is obtained by taking the on-shell limit.
It is observed that there is no direct access to the deriva-
tive (2.6), because in the general case we have

∂pi {f(p1, · · · , pn) |P } �= ∂pif(p1, · · · , pn) |P . (2.7)

The derivative pi∂pi
{f(p1, · · · , pn) |P } is not well-defined

since the on-shell condition p2i = m2 means that p0i ,
p1i , p

2
i , p

3
i are not independent of each other, but

∂pi
f(p1, · · · , pn) |P is well-defined and hence can be used

to define the previous one.
Introducing two new functions,

GA,n := (ir−
1
2 )n

n∏
i=1

(✷xi +m
2)Gn(x1, x2,· · ·, xn),(2.8)

SA,n :=
∫ n∏

i=1

d4xi ei
∑n

j=1 pj ·xj GA,n, (2.9)

the S-matrix element Sn is obtained to be found to be

Sn = lim
pi∈P

SA,n(p1, p2, · · · , pn), (2.10)

which implies that we can construct WD Sn with
WDSA,n |P . Hence it is necessary to understand what
WDSA,n |P does mean in a physical sense.
Furthermore, for convenience, we introduce the nota-

tion FA
n (x; p) to denote the action of both the Fourier

transformation and the amputation, namely

FA
n (x; p) :=

(
ir−

1
2

)n∫ n∏
i=1

d4xi ei
∑n

j=1 pj ·xj

n∏
i=1

(✷xi
+m2),

(2.11)

where (x; p) is the abbreviation of (x1, · · ·xn; p1, · · · pn).
Then SA,n is denoted by FA

n (x; p)Gn. We also introduce
the notation FA

n (x, x̌l; p):

FA
n (x, x̌l; p) (2.12)

:=
(
ir−

1
2

)n ∫ n∏
i=1

d4xi ei
∑n

j=1 pj ·xj

n∏
i=1,i �=l

(✷xi
+m2).

Similarly, FA
n (x;−q) and FA

n (x, x̌l;−q) are given by re-
placing the momentum pi with −qi in the corresponding
parts.
The general procedure for calculating the conformal

transformations of the S-matrix can be concluded as
follows. As a starting point, we must have a set of
well-defined Green functions. Then we carry out the
following steps.

(1) Calculate WD Gn(x1, x2, · · · , xn);
(2) calculate WD GA,n(x1, x2, · · · , xn);
(3) calculate WD SA,n(p1, p2, · · · , pn);
(4) calculate WD Sn(p1, p2, · · · , pn).
In order to check the result, we can compare

WD Sn(p1, p2, · · · , pn) with known results in case they ex-
ist. If we can control the breaking further, then we have
to repeat all the above steps. Moreover, there are several
reasons for introducing the above procedure. First of all,
they are set up for solving the puzzle of how to define the
derivation on the on-shell objects. Second, carrying them
out step by step will be helpful to choose suitable for-
malisms of the conformal transformations as realizations
of differential operators. Third, like what we will do in
the fourth section, the conformal transformations of the
S-matrix can also be calculated by the commutators be-
tween charges and the S-matrix operator. However, as will
be shown, to define charges for the conformal transforma-
tions is not an easy task.

3 Conformal transformations of the S-matrix
in the massive scalar model

A well-defined perturbative quantum field theory provides
at least exact rules to compute renormalized Green func-
tions and derive relations among different renormalized
Green functions. In this section, the conformal transfor-
mations of the S-matrix in the well-defined massive φ4

model will be calculated. The massive φ4 model will be
defined in the BPHZ renormalization scheme where the
insertions of the composite operators are represented by
normal products in [14]. However, most results can also
be obtained from other regularization schemes or renor-
malization procedures.

3.1 The massive φ4 model
via the BPHZ renormalization procedure

In this subsection, the well-defined massive φ4 model in
the BPHZ renormalization scheme is introduced. Namely,
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the renormalized action, the renormalization conditions,
Zimmermann’s forest formula, the renormalized Green
function, the renormalized Green function with insertions
of normal products, the quantum action principle and the
Zimmermann identities are presented.
The renormalized action Γren can be regarded as the

sum of the free part Γ0 and the interaction part Γint,

Γren = Γ0 + Γint = −z ∆1 − a∆2 − ρ∆4. (3.1)

In the tree approximation, the coefficients z, a, ρ are spec-
ified by

z(0) = 1, a(0) = m2, ρ(0) = λ, (3.2)

where the upper indices denote the power counting of h̄ in
this section. The normal products ∆1, ∆2, ∆4 are given
by

∆1 =
[∫
d4x 1

2φ(x)✷φ(x)
]
4
, (3.3)

∆2 =
[∫
d4x 1

2φ
2(x)

]
4
, (3.4)

∆4 =
[∫
d4x

1
4!
φ4(x)

]
4
. (3.5)

The free part Γ0 is given by −∆1 − m2∆2 determining
the propagator. The renormalized Lagrangian density is
chosen to be

Lren = − 1
2 z φ✷φ− 1

2 aφ
2 − 1

4!
ρφ4, (3.6)

but it can be changed by adding total derivatives. On
the other hand, the renormalized action Γren is also the
sum of the classical action Γcl and all the possible local
counterterms Γcounter, namely

Γren = Γcl + Γcounter (3.7)

= −
∫ (

1
2 φ(✷+m

2)φ+
1
4!
λφ4

)
+O(h̄).

In higher orders, the coefficients z, a, ρ are decided by
the renormalization conditions

Γ̃2(p,−p) |p2=m2 = 0, (3.8)

∂p2 Γ̃2(p,−p) |p2=µ2 = 1, (3.9)

Γ̃4(p1, p2, p3, p4) |Q = −λ, (3.10)

where m is the physical mass, µ is the normalization mass
denoting the renormalization scale, λ is the physical cou-
pling constant and Q is the set given by

Q = (3.11){
pi | p2i = µ2, (pi + pj)2 = 4

3µ
2; i �= j; i, j = 1, 2, 3, 4}.

Γ̃2(p,−p) and Γ̃4(p1, p2, p3, p4) are the two-point 1PI
Green function and the four-point 1PI Green function re-
spectively. Here the rule of the Fourier transformation of

an ordinary function, such as the Green function or 1PI
Green function, between the momentum space and the
coordinate space has been chosen as

F (p1, p2, · · · , pn)

= (2 π)4 δ4
(

n∑
i=1

pi

)
F̃ (p1, p2, · · · , pn)

=
∫ n∏

i=1

d4xi ei
∑n

j=1 pj ·xj F (x1, x2, · · · , xn). (3.12)

The Zimmermann forest formula was given in [14]. It
denotes a procedure for obtaining the renormalized Feyn-
man integrand RΓ (p, k) from the unrenormalized Feyn-
man integrand IΓ (p, k), namely

RΓ (p, k) =
∑
U∈F

SΓ
∏
γ∈U

(−tδγSγ) IΓ (p, k), (3.13)

where U is a forest, F is a set of all possible renormal-
ization forests, SΓ or Sγ are substitution operators, tδγ is
the Taylor subtraction operator cut off by the subtraction
degree δγ , the argument p denotes a set of external mo-
menta and the argument k denotes a set of independent
internal momenta.
The renormalized Green function in the BPHZ renor-

malization procedure was defined in [15,16]. The unrenor-
malized Green function is given in the Gell-Mann–Low
formulation and its renormalized version is directly de-
fined as the finite part under the BPHZ renormalization
procedure,

〈Tφ(x1)φ(x2) · · ·φ(xn)〉
:= BPHZ finite part of

〈Tφ0(x1)φ0(x2) · · ·φ0(xn)e
i

/h
Γ 0

int〉/〈T e i
/h
Γ 0

int〉.(3.14)
The renormalized Green function with insertions of nor-
mal products is given by∏

i

Nδi [Qi(yi)] ·Gn(x1, x2, · · · , xn)

:= 〈T
∏
i

Nδi [Qi(yi)]φ(x1)φ(x2) · · ·φ(xn)〉

= BPHZ finite part of

〈T
∏
i

Nδi

[
Q0
i (yi)

]
φ0(x1)φ0(x2) · · ·φ0(xn)e

i
/h
Γ 0

int〉

/〈T e i
/h
Γ 0

int〉, (3.15)

where the normal products Nδi

[
Q0
i (yi)

]
denote vertices

to be treated with the subtraction degree δi. The symbols
with the upper index 0 are defined in free quantum field
theory. For convenience, the subtraction degrees of normal
products will not be explicitly given in some cases.
The quantum action principle was derived in the

BPHZ renormalization procedure [10–13]. This means
that variations of parameters or fields of the Green func-
tion can be represented by appropriate local insertions. Its
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differential formalism is given in the following way:

∂AΓ = [∂AΓren]4 · Γ, A = m,µ, λ, (3.16)

φ(x)
δΓ

δφ(x)
=
[
φ(x)

δΓren

δφ(x)

]
4

· Γ, (3.17)

where the lower indices of normal products are the
subtraction degrees used in the BPHZ renormalization
scheme.
The Zimmermann identities were proved in [15,16].

They relate the subtraction and the over-subtraction in
the BPHZ renormalization procedure. They are given by

Nδ [Q] · Γ =
∑
i

uiNχ [Qi] · Γ, (3.18)

where the sum is over all possible normal products of the
over-subtraction degree χ with same quantum numbers,
and δ is the subtraction degree, with χ > δ. The coeffi-
cients ui are determined by normalization conditions on
insertions of composite operators.

3.2 The local Callan–Symanzik equation

First of all, we have to control the breaking of the confor-
mal invariance of the Green function. Choosing one suit-
able momentum construction of the local Ward identity
operator for the translation transformation,

w̃T
µ (x) = ∂µφ(x)

δ

δφ(x)
− 1
4
∂µ

(
φ(x)

δ

δφ(x)

)
, (3.19)

the breaking of the conformal invariance will be de-
termined by the insertion of the trace of the energy-
momentum tensor Tµν given by

Tµν = z∂µφ∂νφ− ηµν
(
1
2
z∂φ∂φ+

1
4
zφ✷φ− 1

4
aφ2

)
−c(∂µ∂ν − ηµν✷)φ2, (3.20)

where Tµν satisfies w̃T
µ (x)Γren = −∂ν [Tµν(x)]4, ηµν is the

metric given in Minkowski space-time and c is a constant
determined by coupling the energy-momentum tensor Tµν
to a curved background [21,22].
The dilatation transformation of the vertex functional

Γ is defined by

WDΓ [φ] :=
∫
d4x (1 + x∂x)φ(x)

δΓ [φ]
δφ(x)

=
∫
d4x [T ν

ν ]4 · Γ. (3.21)

The special conformal transformation of the vertex func-
tional Γ is defined by

αWKΓ [φ]

:=
∫
d4x

(
αν(2xνxµ − ηµνx2)∂µ + 2αx

)
φ(x)

δΓ [φ]
δφ(x)

=
∫
d4x (2αx) [T ν

ν ]4 · Γ, (3.22)

where the symbol α is a constant parameter and αWK

denotes the scalar product of ανWK
ν .

Hence we have to first carry out the insertion of the
trace of the energy-momentum tensor into the vertex func-
tional Γ . With the known βλ function and the anomalous
dimension γ used in the Callan–Symanzik equation, the
local Callan–Symanzik equation is obtained by

−[T ν
ν ]4 · Γ + βλ[∂λLren]4 · Γ − 1

2γφ
δ

δφ
Γ

=
(
z − 6c− 1

2αms
)
[φ✷φ+ ∂φ∂φ]4 · Γ

+ 1
2αm[φ

2]2 · Γ, (3.23)

where αm is a parameter to be determined, and we have
used the Zimmermann identity given by

1
2 [φ

2]2 · Γ
= 1

2 [φ
2]4 · Γ + 1

2s [∂φ∂φ]4 · Γ + 1
2r [φ✷φ]4 · Γ

+
1
4!
t [φ4]4 · Γ, (3.24)

the parameters s, r, t being fixed by the normalization
conditions on the insertions of the related composite op-
erators. By defining αm, βλ and γ as the solutions of the
following three equations:

αm = −2a− βλ∂λa+ γa,
αm(r − s) = −βλ∂λz + γz,
αmt = −βλ∂λρ+ 2γρ,

(3.25)

we arrive at the conventional form of the Callan–Symanzik
equation.
The Callan–Symanzik equation like the ordinary one

can be obtained by integrating both sides of (3.23),(
m∂m + βλ∂λ − 1

2γN
)
Γ = αm∆d · Γ, (3.26)

where the symbol m∂m denotes m∂m + µ∂µ, the classical
approximation of αm is given by α

(0)
m = −2m2, and N and

the ∆d denote by

N =
∫
d4xφ(x)

δ

δφ(x)
, ∆d =

[∫
d4x 1

2φ
2(x)

]
2
,

(3.27)
respectively.
Three remarks are in order. First, there are four dif-

ferential operators,

m∂m, µ∂µ, βλ∂λ, N , (3.28)

and one identity, the Zimmermann identity, but we only
have three independent integral insertions. So, we have to
obtain two constraint equations. One is just the Callan–
Symanzik equation and the other is the renormaliza-
tion group equation. Second, although here the Callan–
Symanzik equation is derived in the BPHZ scheme, its
formulation (3.26) is ordinary, independent of the schemes
used. Third, taking the massless limit in a formal sense,
we have αm → 0 due to

αm = −2m2 1

r ∆d · Γ̃2|p2=m2

(3.29)

as explained in AppendixA.
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3.3 The Poincaré transformation of the S-matrix

The Poincaré transformations consist of translations and
Lorentz rotations. That the S-matrix is invariant under
Poincaré transformations is one fundamental physical re-
quirement in axiomatic quantum field theory. We have to
realize it in our approach.
The global Ward identity for space-time translations

in the generating functional Z[J ] is defined by

WT
µ Z[J ] :=

∫
d4xJ(x) ∂µ

δZ[J ]
δJ(x)

. (3.30)

Similarly, the global Ward identity for Lorentz trans-
formations is defined by

WL
µνZ[J ] :=

∫
d4xJ(x) (xµ∂ν − xν∂µ) δZ[J ]

δJ(x)
. (3.31)

Since the renormalized action Γren is invariant under
space-time translations and Lorentz rotations, applying
the quantum action principle, we obtain

WT
µGn(x1, x2, · · · , xn) = 0,

WL
µνGn(x1, x2, · · · , xn) = 0. (3.32)

Due to the commutativity between the Klein–Gordon
operator ✷x + m2 and the differential operators ∂µ or
xµ∂ν − xν∂µ, we have

WT
µGA,n(x1, x2, · · · , xn) = 0,

WL
µνGA,n(x1, x2, · · · , xn) = 0, (3.33)

which are transformed into the momentum space formu-
lation by

WT
µ SA,n :=

n∑
l=1

pl,µSA,n = 0,

WL
µνSA,n :=

n∑
l=1

(
pl,µ

∂

∂pl,ν
− pl,ν ∂

∂pl,µ

)
SA,n = 0.(3.34)

From these equations, we can derive the conservation of
four-momentum and the fact that SA,n is Lorentz invari-
ant. Then we assign to SA,n and Sn two new Lorentz in-
variant functions S′

A,n and S
′
n in the following way:

SA,n = δ4
(

n∑
i=1

pi

)
S′
A,n(p

2
i , pi · pj ,m2),

Sn = δ4
(

n∑
i=1

pi

)
S′
n(pi · pj ,m2), (3.35)

where the second one implies that the S-matrix is Poincaré
invariant, namely

WT
µ Sn = 0, WL

µνSn = 0. (3.36)

Furthermore, we define
∑n

i=1 pi∂pi
Sn by

n∑
i=1

pi∂pi
Sn (3.37)

:=
n∑
i=1

pi∂pi
SA,n|P − 2m2δ4

(
n∑
i=1

pi

)
n∑
i=1

∂p2
i
S′
A,n|P ,

p2i and pi · pj , i �= j, being regarded as independent vari-
ables before the on-shell limit. When we formally take the
massless limit in our approach, we find

n∑
i=1

(1 + pi∂pi
)Sn =

n∑
i=1

(1 + pi∂pi
)SA,n|P . (3.38)

3.4 The dilatation transformation of the S-matrix

In this subsection, the dilatation transformation of the
S-matrix will be treated with the general procedure pro-
posed above. It is well known that the breaking of the
dilatational invariance can be characterized by the beta
function βλ and the anomalous dimension γ in the Callan–
Symanzik equation. We will read off our result in the mass-
less limit and compare it with Zimmermann’s result in
[14].
Define the global Ward identity for the dilatation

transformation of the generating functional Z[J ] by

WDZ[J ] :=
∫
d4xJ(x) (1 + x∂x)

δZ[J ]
δJ(x)

; (3.39)

then the transformation of the general Green function Gn

under dilatation is

WD Gn =
n∑
i=1

(1 + xi∂xi) Gn(x1, x2, · · · , xn). (3.40)

By dimensional analysis, the dilatation transformation of
the Green function is represented by

WD Gn = m∂mGn(x1, x2, · · · , xn), (3.41)

where we denote m∂m + µ∂µ by m∂m for convenience.
With the Callan–Symanzik equation realized in the

Green function obtained by applying the Legendre trans-
formation to (3.26), the dilatation transformation of the
n-point Green function is obtained as

WD Gn =
i
h̄
αm∆d ·Gn − (βλ∂λ + 1

2 nγ
)
Gn, (3.42)

where the insertion αm∆d · Gn vanishes in the limit of
large momenta due to the Weinberg asymptotic theorem
[23] and is thus called “soft” breaking of the dilatation
invariance.
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Calculating WD GA,n, we obtain

WD GA,n :=
n∑
i=1

(1 + xi∂xi) (ir
−1/2)

n
n∏
i=1

(✷xi +m
2)Gn

= (ir−1/2)
n

n∏
i=1

(✷xi +m
2)WD Gn (3.43)

−(ir−1/2)
n

n∑
l=1

2✷xl

n∏
i=1,i �=l

(✷xi
+m2)Gn,

where we used the commutator
[
1 + x∂x,✷x +m2

]
=

−2✷x implying that the amputation does not commute
with the dilatation transformation.
Replacing WD Gn in the above expression with (3.42),

we have

WD GA,n = −βλ ∂λGA,n − 1
2n(βλ∂λ ln r + γ)GA,n

−2nGA,n +∆′
d ·GA,n, (3.44)

where ∆′
d ·GA,n is given by

∆′
d ·GA,n = (ir−1/2)

n
n∑
l=1

2m2
n∏

i=1,i �=l

(✷xi +m
2)Gn

+(ir−1/2)n
i

h̄
αm

n∏
i=1

(✷xi +m
2)∆d ·Gn.

(3.45)

Then the dilatation transformation of SA,n is given by

WD SA,n :=
n∑
i=1

(1 + pi∂pi)SA,n = −m∂m SA,n

= βλ ∂λ SA,n + 1
2n(βλ∂λ ln r + γ)SA,n

−∆′
d · SA,n, (3.46)

where ∆′
d ·SA,n is the Fourier transformation of ∆′

d ·GA,n,
namely

∆′
d · SA,n =

∫ n∏
i=1

d4xi ei
∑n

j=1 pj ·xj ∆′
d ·GA,n. (3.47)

Taking the on-shell limit, we obtain ∆′
d · Sn by

∆′
d · Sn = ∆′

d · SA,n |P . (3.48)

Two remarks are in order. In the on-shell limit, it seems
that ∆′

d ·Sn is not a well-defined object. We have to prove
that in ∆′

d · Sn, all on-shell poles like 1
p2

i −m2 cancel. In
fact, ∆′

d · Sn does not include contributions from the in-
sertion of the local integral ∆d into external propagators
of the Green function Gn, which makes the upper index ′
meaningful,

∆′
d · Sn = i

h̄
αm lim

pi∈P
FA
n (x; p)∆

′
d ·Gn, (3.49)

and hence the amputation of external propagators in
∆′

d · Sn can be well-defined. The proof is given in Ap-
pendixA. Here, we generalize the notation ∆ · Sn to arbi-
trary insertions such as a double insertion like ∆1 ·∆2,

∆1 ·∆2 · SA,n := FA
n (x; p)∆1 ·∆2 ·Gn. (3.50)

Second, the term βλ∂λ ln r + γ can be represented by the
on-shell normalization conditions. Combining the Callan–
Symanzik equation for the two-point 1PI Green function
with dimensional analysis, we obtain a very useful equa-
tion:

2(1− p2∂p2)Γ̃2(p,−p) + (βλ∂λ − γ)Γ̃2(p,−p)
= αm∆d · Γ̃2(p,−p). (3.51)

By multiplying the derivative p2∂p2 on both sides and tak-
ing the on-shell limit, we have

(βλ∂λ ln r + γ) = −2 rm2∂p2∂p2 Γ̃2(p,−p) |p2=m2

−αm r∂p2∆d · Γ̃2(p,−p) |p2=m2 .

(3.52)

With the following dimensional analysis: n∑
j=1

p2j∂p2
j
+m2∂m2 + µ2∂µ2

SA,n |P

=

 n∑
j=1

p2j∂p2
j
+m2∂m2 + µ2∂µ2

Sn, (3.53)

which means that the on-shell limit does not change the
dimension of SA,n, we derive the transformation of the
S-matrix under dilatation by

WD Sn = WDSA,n |P −2 (m2∂m2Sn −m2∂m2SA,n |P
)

= βλ ∂λ Sn + 1
2n(βλ∂λ ln r + γ)Sn −∆′

d · Sn

−2m2δ4

(
n∑
i=1

pi

)
n∑
i=1

∂p2
i
S′
A,n |P . (3.54)

Four remarks have to be made. First, the dilatation
transformation of the S-matrix seems to be complicated,
but the expression for the off-shell S-matrix element SA,n
is simpler. It is necessary to find what WDSA,n |P does
mean. Second, we can take the complete on-shell normal-
ization conditions, namely choosing the renormalization
scale µ to be the same as the physical mass scale m. Then
the residue r is the factor 1 and the anomalous dimension
γ can be written as

γ = −2m2
(
∂p2∂p2 Γ̃2 +

αm
2m2 ∂p2∆d · Γ̃2

)∣∣∣
p2=m2

. (3.55)

When we take the normalization condition for the inser-
tion of the compositor operator ∆d as ∆d · Γ̃2 |p2=m2= 1,
the parameter αm is given by αm = −2m2, using (3.29).
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Third, when we formally take the massless limit, some
terms in the above equation (3.54) will vanish,

αm → 0; (βλ∂λ ln r + γ)→ 0; ∆′
d · Sn → 0; (3.56)

our result will become the same as Zimmermann’s,
n∑
i=1

(1 + pi∂pi)Sn = βλ ∂λ Sn, (3.57)

where the anomalous dimension γ does not show up, but
may appear in the renormalization group equation. If
we take the massless limit in a formal sense under the
complete on-shell normalization condition, the anomalous
dimension will vanish, and we will obtain the Callan–
Symanzik equation by

(µ∂µ + βλ∂λ)Γ = 0, (3.58)

which implies that the anomalous dimension γ only has an
effect in the off-shell case [4]. Fourth, since the dilatation
transformation changes the mass of the particle, it cannot
be regarded as a type of symmetry. But we can use it to
relate two theories with different masses in the Fock space,
for example,

Sn(m2)− Sn(m1)

= − (βλ ∂λ + 1
2n(βλ∂λ ln r + γ)

) ∫ lnm2

lnm1

d(lnm) Sn

+
∫ lnm2

lnm1

d(lnm)∆′
d · Sn

+δ4
(

n∑
i=1

pi

) ∫ m2
2

m2
1

dm2
n∑
i=1

∂p2
i
S′
A,n |P . (3.59)

3.5 The special conformal transformation
of the S-matrix

The global Ward identity for the special conformal trans-
formation in the generating functional Z[J ] is defined by

αWKZ[J ] (3.60)

:=
∫
d4xJ(x)

(
αν(2xνxµ − ηµνx2)∂µ + 2αx

) δZ[J ]
δJ(x)

.

With the commutator,[
n∑
l=1

{(2xνxµ − ηµνx2)∂µ + 2xν},
n∏
i=1

(✷xi
+m2)

]

= −
n∑
l=1

4xl,ν✷xl

n∏
i=1,i �=l

(✷xi +m
2), (3.61)

we obtain the special conformal transformation of the
“amputated” Green function GA,n,

αWKGA,n =
(
ir−

1
2

)n n∏
i=1

(✷xi +m
2)αWKGn (3.62)

−
(
ir−

1
2

)n n∑
l=1

(4αxl)✷xl

n∏
i=1,i �=l

(✷xi +m
2)Gn.

Applying the local Callan–Symanzik equation (3.23),
the special conformal transformation of the n-point Green
function is calculated as follows:

αWKGn =
i
h̄
αm α∆k ·Gn − i

h̄
βλ[∂λ(αΓ k

ren)] ·Gn

− 1
2γ

n∑
l=1

(2αxl)Gn, (3.63)

where the insertion α∆k ·Gn and αΓ k
ren denote

α∆k ·Gn =
∫
d4x (2αx) 12 [φ

2(x)] ·Gn,

αΓ k
ren =

∫
d4x (2αx)[Lren]4. (3.64)

Defining the special conformal transformation on SA,n by

αWKSA,n := i
n∑
l=1

ανδkν (pl)SA,n, (3.65)

where the differential operator δkν (pl) is given by

δkν (p) = pµ

(
2

∂2

∂pν∂pµ
− ηµν

∂2

∂pζ∂pζ

)
+ 2

∂

∂pν
, (3.66)

with the argument pl, we obtain the result that

αWKSA,n = − i
h̄
βλFA

n (x; p)[∂λ(αΓ
k
ren)] ·Gn (3.67)

− 1
2γFA

n (x; p)
n∑
l=1

(2αxl)Gn + α∆′
k · SA,n,

in which the insertion α∆′
k · SA,n is defined as

α∆′
k · SA,n := 2m2

n∑
l=1

FA
n (x, x̌l; p)(2αxl)Gn

+
i
h̄
αm FA

n (x; p)α∆k ·Gn. (3.68)

With the double insertions, the term
i
h̄βλFA

n (x; p)[∂λ(αΓ
k
ren)] ·Gn can be represented by

i
h̄
βλ

(
∂λ +

n

2
∂λ ln r

)
([(αΓ k

ren)] · Sn)

− i
h̄
βλ[(αΓ k

ren)] · [∂λΓren] · Sn, (3.69)

which together with (3.67) suggests that it is not pos-
sible to obtain the combinational term of βλ∂λ ln r + γ
in the case of the special conformal transformation. Via
the complete on-shell normalization condition, the term
containing ∂λ ln r will vanish and the anomalous dimen-
sion γ will be fixed. Formally taking the massless limit,
the term α∆′

k · SA,n will also become zero. The question
whether the term α∆′

k · SA,n |P has on-shell poles or not
will be answered in AppendixB. Similar to the dilatation
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transformation of the S-matrix, we also define αWKSn by
taking the on-shell limit of αWKSA,n, namely

αWKSn := αWKSA,n |P −4 im2
n∑
l=1

αPk
l S

′
A,n |P ,

(3.70)
where the second term vanishes in the formal massless
limit and the differential operator Pk

l,ν is given by

Pk
l,ν :=

(
∂δ4

∂pνl
+ δ4

n∑
m=1

pm,ν
∂

∂(pm · pl)

)
∂

∂p2l
, (3.71)

the symbol δ4 denoting the delta function δ4 (
∑n

i=1 pi).
Finally, in order to control further the breaking of the

conformal transformations of the S-matrix, a local cou-
pling λ(x) will be introduced instead of the constant cou-
pling λ, since it is observed that

lim
λ(x)→λ

δ

δλ(x)
Gn =

i
h̄
∂λ[Lren]4 ·Gn. (3.72)

4 Conformal transformations of the S-matrix
in the functional formalism

In the above sections, we treated our problem in the or-
dinary functional space instead of in the operator formal-
ism. However, it is possible to recover information about
the operator formalism in our calculation where the S-
matrix is defined by using the LSZ reduction procedure.
We construct the charges responsible for the conformal
transformations with the help of the local Ward identi-
ties. Via the commutators between the charges and the
S-matrix operator, the conformal transformations of the
S-matrix can be represented in the functional formalism
in an effective way. In addition, a generating functional of
the “amputated” Green functions is at first given so that
all the previous calculation can be carried out in terms of
functionals.

4.1 The functional
for the “amputated” Green function

Define the generating functional for “amputated” Green
functions by

ZA[J ] := ZA[J, j]|j=0 = Σ[J, j]Z[j]|j=0, (4.1)

where Σ[J, j] is given by

Σ[J, j] = exp
{

−ih̄
∫
d4x J(x)(✷x +m2)

δ

δj(x)

}
. (4.2)

This functional can be used to derive the previous re-
sults. As an example, the special conformal transforma-
tion of the “amputated” Green function is calculated. The

Ward identity for the special conformal transformation is
defined by

αWKZA[J ] :=
∫
d4xαν(2xνxµ − ηµνx2)w̃T

µ [J ]ZA[J ],

(4.3)
where w̃T

µ [J ] is given by

w̃T
µ [J ](x) = J(x)∂

x
µ

δ

δJ(x)
− 1
4
∂xµ

(
J(x)

δ

δJ(x)

)
. (4.4)

By direct calculation, we find

αWKZA[J ]

=
∫
d4xJ(x)(✷x +m2)

(
αν(2xνxµ − ηµν x2)∂µ + 2αx

)
×(−ih̄) δ

δj(x)
ZA[J, j]|j=0

−
∫
d4x (4αx)J(x)✷x(−ih̄) δ

δj(x)
ZA[J, j]|j=0. (4.5)

Multiplying by the product of the derivatives
∏n

i=1
δ

δJ(xi)
and then taking J = 0, we obtain the same result as in
(3.62).

4.2 The functional for the S-matrix
in the operator formalism

The S-matrix operator, the generating functional for the
S-matrix element, is given by

Ŝ[φ̂in] =: Σ̂[φ̂in, J ] : Z[J ]|J=0, (4.6)

where the symbol : denotes the normal ordering of oper-
ator products, φ̂in is a free quantum field operator, and
Σ̂[φ̂in, J ] is given by

Σ̂[φ̂in, J ] = exp X̂, (4.7)

the operator X̂ being given by

X̂ =
(
i r−

1
2

)∫
d4x φ̂in(x)(✷x +m2)(−ih̄) δ

δJ(x)
. (4.8)

Here, we expand the field operator φ̂in(x) in the mo-
mentum space by

φ̂in(x) =
∫
dk̃ (a(k)e−i kx + a†(k)ei kx), (4.9)

where the annihilation operator a(k) and the creation op-
erator a†(k) satisfy the commutator relation

[a(k), a†(k′)] = (2π)3 2ωk δ3(k − k′), (4.10)

and the symbols dk̃ and ωk denote

dk̃ =
d3k

(2π)3 2ωk
, ωk :=

√
k2 +m2. (4.11)
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The state |k1, k2, · · · kn〉 is constructed from the vacuum
state |0〉 by

|k1, k2, · · · kn〉 = a†(k1)a†(k2) · · · a†(kn)|0〉. (4.12)

In the following, we represent the conformal trans-
formations of the S-matrix by the commutators between
the S-matrix operator Ŝ and the charge operators. First,
we define the charge P̂µ for the translation transforma-
tion, the charge M̂µν for the Lorentz transformations, the
charge D̂ for the dilatation transformation and the charge
K̂ν for the special conformal transformation. The confor-
mal transformations of the quantum field φ̂in(x) generated
by the charges are given by

i
h̄
[P̂µ, φ̂in(x)] = ∂µφ̂in(x),

i
h̄
[M̂µν , φ̂in(x)] = (xµ∂ν − xν∂µ)φ̂in(x),

i
h̄
[D̂, φ̂in(x)] = (1 + x∂x)φ̂in(x), (4.13)

i
h̄
[K̂ν , φ̂in(x)] = ((2xνxµ − ηµνx2)∂µ + 2xν)φ̂in(x),

and the relevant details are presented in AppendixC.
Two remarks have to be made. Even in the free theory,

it is a very delicate subject to define the charges responsi-
ble for the dilatation transformation and the special con-
formal transformation because they will change the mass
and we have to work in different Hilbert spaces. The rea-
son can be seen from the commutative relations between
the generators D, Kν and P 2 at the classical approxima-
tion, namely

[D,P 2] = −2P 2, (4.14)
[Kν , P

2] = −4xν P 2. (4.15)

They imply that only the massless states are conformal in-
variant [24]. But we have treated our problem in terms of
the Green functions without introducing any charges de-
fined in the Hilbert space. Furthermore, we have assumed
that the vacuum state |0〉 is invariant under the conformal
transformations, namely

P̂µ|0〉 = 0, M̂µν |0〉 = 0, D̂|0〉 = 0, K̂ν |0〉 = 0.
(4.16)

The commutator between the charge P̂µ and the S-matrix
operator Ŝ is given by

[P̂µ, Ŝ] = [P̂µ, : Σ̂ :]Z[J ]|J=0. (4.17)

By calculating the commutator between WT and X̂ and
observing

i
h̄
[P̂µ, X̂] = [WT

µ , X̂], (4.18)

we obtain the result

i
h̄
[P̂µ, Ŝ] = [WT

µ , : Σ̂ :]Z[J ]|J=0 (4.19)

= WT
µ : Σ̂ : Z[J ]|J=0− : Σ̂ :WT

µ Z[J ]|J=0 = 0,

where the potential trouble induced by the normal or-
dering is avoided since the charge P̂µ does not mix the
creation part and annihilation part of the asymptotic op-
erator, namely

i
h̄
[P̂µ, φ̂

(+)
in (x)] = ∂µφ̂

(+)
in (x),

i
h̄
[P̂µ, φ̂

(−)
in (x)] = ∂µφ̂

(−)
in (x). (4.20)

Similarly, the commutator between the charge Mµν and
the S-matrix operator Ŝ yields

[M̂µν , Ŝ] = 0. (4.21)

Hence the quantum field theory we are treating is invariant
under the Poincaré transformations.
In the case of the dilatation transformation, the com-

mutator between WD and X̂ is given by

[WD, X̂] (4.22)

=
i
h̄
[D̂, X̂] + 2

(
ir−

1
2

)
m2
∫
d4x φ̂in(x)(−ih̄) δ

δJ(x)
.

The commutator between the charge D̂ and the S-matrix
operator Ŝ is calculated to give

i
h̄
[D̂, Ŝ] =

i
h̄
[D̂, Σ̂ :]Z[J ]|J=0

= − : Σ̂ :WDZ[J ]|J=0 (4.23)

− 2m2
(
ir−

1
2

)∫
d4x (−ih̄) δ

δJ(x)
: φ̂in(x)Σ̂ : Z[J ]|J=0.

In the case of the special conformal transformation, the
commutator between the generator αK̂ and the S-matrix
operator Ŝ is calculated by

i
h̄
[αK̂, Ŝ] = − : Σ̂ : αWKZ[J ]|J=0

− 2m2
(
ir−

1
2

)
(4.24)

×
∫
d4x (2αx)(−ih̄) δ

δJ(x)
: φ̂in(x)Σ̂ : Z[J ]|J=0.

4.3 The conformal transformations of the S-matrix

As an example, we calculate the dilatation transformation
of the S-matrix in the functional formalism. Replacing
WDZ[J ] by the differential operator m∂m, and then us-
ing the Callan–Symanzik equation in the generating func-
tional Z[J ], we obtain

− : Σ̂ :WDZ[J ]|J=0

= βλ : Σ̂ : ∂λZ[J ]|J=0 + 1
2γ : Σ̂ : NZ[J ]|J=0

− i
h̄
αm : Σ̂ : ∆d · Z[J ]|J=0, (4.25)
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where N is given by
∫
d4x J(x) δ

δJ(x) . Then the dilatation
transformation of the S-matrix operator can be repre-
sented by

i
h̄
[D̂, Ŝ] (4.26)

= βλ∂λŜ + 1
2 (βλ∂λ ln r + γ) : X̂Σ̂ : Z[J ]|J=0 −∆′

d · Ŝ,
∆′

d · Ŝ denoting
∆′

d · Ŝ
=
i
h̄
αm : Σ̂ : ∆d · Z[J ]|J=0

+2m2
(
ir−

1
2

)
(4.27)

×
∫
d4x (−ih̄) δ

δJ(x)
: φ̂in(x)Σ̂ : Z[J ]|J=0.

In addition, applying m∂m + βλ∂λ on the S-matrix oper-
ator Ŝ, we find

m∂mŜ = − i
h̄
[D̂, Ŝ], (4.28)

which is useful for charge constructions.
Furthermore, the consistency of all the results in this

subsection can be checked with those of the previous ones
in the S-matrix element. Taking the incoming state by
|q1, q2, · · · qn1〉, the outgoing state by 〈pn2 , · · · , p2, p1|, we
obtain the result

〈pn2 , · · · , p2, p1|
i
h̄
[D̂, Ŝ]|q1, q2, · · · qn1〉

= βλ ∂λ Sn1→n2 +
1
2 (n1 + n2)(βλ∂λ ln r + γ)Sn1→n2

−∆′
d · Sn1→n2 , (4.29)

where Sn1→n2 is the matrix element denoted by
〈pn2 , · · · , p2, p1|Ŝ|q1, q2, · · · qn1〉. The S-matrix element Sn
treated before is obtained by taking n1 as zero and n2 as
n. Due to the fact that the conformal transformations are
linear, the dilatation transformation of the field operator
φin(x) can be decomposed into two independent parts,
namely

i
h̄
[D̂, φ̂(+)

in (x)] = (1 + x∂x)φ̂
(+)
in (x),

i
h̄
[D̂, φ̂(−)

in (x)] = (1 + x∂x)φ̂
(−)
in (x). (4.30)

With these at hand, we obtain the matrix element real-
ization of the commutator i

h̄ [D̂, Ŝ] by

〈pn2 , · · · , p2, p1|
i
h̄
[D̂, Ŝ]|q1, q2, · · · qn1〉 (4.31)

=

(
n1∑
l=1

(1 + ql∂ql
) +

n2∑
l=1

(1 + pl∂pl
)

)
SA,n1→n2 |P ,

which gives a meaning to our calculation of the derivatives
of the following type:

∂pi {f(p1, · · · , pn)} |P . (4.32)

Hence we declare WD SA,n |P to be the matrix element of
the commutator between D̂ and Ŝ.
In the case of the special conformal transformation, we

obtain the result in the operator formalism

i
h̄
[αK̂, Ŝ] =

i
h̄
βλ : Σ̂ : ∂λ(αΓ k

ren) · Z[J ] |J=0

+ 1
2γ : Σ̂ : αN kZ[J ]|J=0 − α∆′

k · Ŝ, (4.33)

where αN k is given by

αN k =
∫
d4x (2αx)J(x)

δ

δJ(x)
, (4.34)

and α∆′
k · Ŝ is defined by

α∆′
k · Ŝ := i

h̄
αm : Σ̂ : α∆k · Z[J ]|J=0

+2m2
(
ir−

1
2

)
(4.35)

×
∫
d4x (2αx) : φ̂in(x)Σ̂ : (−ih̄) δ

δJ(x)
Z[J ]|J=0.

In addition, the above result can be also realized in the
S-matrix element,

〈pn2 , · · · , p2, p1|
i
h̄
[αK̂, Ŝ]|q1, q2, · · · qn1〉

= i

(
n1∑
l=1

αδk(ql)−
n2∑
l=1

αδk(pl)

)
SA,n1→n2 |P . (4.36)

5 Conformal transformations
of the S-matrix with local coupling

In this section, we will treat the conformal transformations
of the S-matrix in the φ4 model with an external field: the
case of local coupling. It was originally used to study the
renormalizability like in [1]. In such a case, the breaking of
the conformal invariance can be controlled better in prin-
ciple than with constant coupling, because the insertion
of the trace of the energy-momentum can be represented
by the action of differential operators. It is also helpful for
constructing charges and carrying out consistency condi-
tions to all orders [22].
In the following, a well-defined massive φ4 model with

local coupling in the BPHZ renormalization procedure is
first introduced. Then the local Callan–Symanzik equa-
tion is calculated and used to derive both the dilatation
transformation and the special conformal transformation
of the S-matrix. All results of this section in the constant
coupling limit are required to return to those of the above
sections.

5.1 The massive φ4 model with local coupling

The renormalized action Γren,λ is constructed by requiring
that it is Poincaré invariant and satisfies dimensional con-
straints of the power-counting renormalizability. First, we
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will list all possible independent Poincaré invariant local
basis as monomials of λ(x) and φ(x) with dimension four:

I(n)
m = λnφ2,

I
(n)
l = λnφ✷φ,

I
(n)
4 = λnφ4,

I
(n)
1 = λn−1∂µλ∂

µφ2,

I
(n)
λ = λn−2∂µλ∂

µλφ2,

I
(n)
k = 1

2✷(λnφ2),

I
(n)
2 =

1
n
∂µ(∂µλnφ2). (5.1)

Then the renormalized action is an integral over the
space-time variables of all possible linear combinations in
the whole above local basis,

Γren,λ =
∞∑
n=0

∫ [
− 1

2z
(n)I

(n)
l − 1

2a
(n)I(n)

m − 1
4!
ρ(n)I

(n+1)
4

+ z̃(n)I
(n)
1 + z(n)

λ I
(n)
λ

]
, (5.2)

where all coefficients can be determined and the upper
indices denote the power counting of local coupling in this
section. In the classical approximation, we desire that the
φ4 model with local coupling returns to the original one,
which means

z(0) = 1, a(0) = m2, ρ(0) = 1,

z̃(0) = 0, z
(0)
λ = 0. (5.3)

In higher orders, the coefficients z(n), a(n), ρ(n), n ≥ 1,
can be fixed by the renormalization conditions similar to
(3.8),

lim
λ(x)→λ

Γ̃2(p,−p) |p2=m2 = 0, (5.4)

lim
λ(x)→λ

∂p2 Γ̃2(p,−p) |p2=µ2 = 1, (5.5)

lim
λ(x)→λ

Γ̃4(p1, p2, p3, p4) |Q = −λ, (5.6)

where the symbol λ denotes the constant coupling. The
coefficients z̃(n), z(n)

λ , n ≥ 1, can be decided by suitable
renormalization conditions, which are not given here since
they are not used. In addition, we arrange that the relation
between the counting number of loops (the power counting
of h̄) and the counting number of local coupling λ(x) is
the same as in the case of constant coupling, which means
that z(1)λ = 0.
For the perturbative calculation in higher orders, we

still take the BPHZ renormalization procedure to define
the finite Green function and apply the normal product
algorithm to define the insertion of composite operators,
since a local coupling is introduced as the external field
and this only changes the assignment of the external mo-
menta. The quantum action principle with local coupling

is given in its differential formalism,

∂AΓ = [∂AΓren,λ]4 · Γ, A = m,µ, (5.7)
δΓ

δλ(x)
=
[
δΓren,λ

δλ(x)

]
4

· Γ,

φ(x)
δΓ

δφ(x)
=
[
φ(x)

δΓren,λ

δφ(x)

]
4

· Γ. (5.8)

The Zimmermann identity with local coupling is still con-
structed by expanding the insertion of a normal product
with the lower subtraction degree in a linear combination
of all possible independent insertions with the same higher
subtraction degree. For example,

1
2 [φ

2]2 · Γ = 1
2 [φ

2]4 · Γ

+
∞∑
n=0

[
1
2u

(n)
l I

(n)
l +

1
4!
u

(n)
4 I

(n+1)
4

]
· Γ (5.9)

+
∞∑
n=0

[u(n)
1 I

(n)
1 + u(n)

λ I
(n)
λ + v(n)

2 I
(n)
2 + v(n)

k I
(n)
k ]4 · Γ,

which will return to the Zimmermann identity (3.24) in
the constant coupling limit.

5.2 The local Callan–Symanzik equation

Define the energy momentum tensor Tµν by the local
Ward identity for space-time translations, namely

w̃T
µΓ [φ, λ] =: −∂ν [Tµν ]4 · Γ [φ, λ], (5.10)

where the contact term w̃T
µ is defined by

w̃T
µ [φ, λ] := ∂µφ

δ

δφ
− 1
4
∂µ

(
φ
δ

δφ

)
+ ∂µλ

δ

δλ
. (5.11)

With a local coupling, the breaking of the conformal
invariance still is controlled by the insertion of the trace
of the energy-momentum tensor which is calculated to be

T ν
ν =

∞∑
n=0

a(n)I(n)
m −

∞∑
n=0

(z(n) − 6c(n))I(n)
k −

∞∑
n=0

z̃(n)I
(n)
2 ,

(5.12)
where c(n) denote contributions from total derivatives and
can be determined by the introduction of a curved back-
ground like in [21,22]. The local Callan–Symanzik equa-
tion reads

[T ν
ν ](x) · Γ −

∞∑
k=0

β
(k)
λ λk+1(x)

δ

δλ(x)
Γ

+ 1
2

∞∑
k=0

γ(k)λk(x)φ(x)
δ

δφ(x)
Γ

= −∆λ(x) · Γ, (5.13)
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where the insertion ∆λ(x) · Γ is given by

∆λ · Γ =
∞∑
n=0

1
2α

(n)
m [I(n)

m ]2 · Γ (5.14)

+
∞∑
n=0

[A(n)
1 I

(n)
1 +A(n)

λ I
(n)
λ +A(n)

2 I
(n)
2 +A(n)

k I
(n)
k ]4 · Γ.

We have used the Zimmermann identity with local cou-
pling (5.9) and defined the parameters α(n)

m , β(n)
λ and γ(n)

as the solutions of the following three equations:
α

(n)
m = −2a(n) +

∑n
k=0 a

(n−k)γ(k)

−∑n
k=0(n− k)a(n−k)β

(k)
λ ,

α
(k)
m u

(n−k)
l = −β(k)

λ z(n−k)(n− k) + γ(k)z(n−k),

α
(k)
m u

(n−k)
4 = −β(k)

λ (n− k + 1)ρ(n−k) + 2ρ(n−k)γ(k),

(5.15)
which are consistent with (3.25) in the constant coupling
limit. Hence the coefficients A(n)

1 , A(n)
λ , A(n)

2 , A(n)
k are

specified by

A
(n)
1 =

n∑
k=0

(nβ(k)
λ z̃(n−k) − γ(k)z̃(n−k))

−
n∑

k=0

α(k)
m

(
u

(n−k)
1 − 1

2kv
(n−k)
k

)
,

A
(n)
λ =

n∑
k=0

[
(n+ k)β(k)

λ z
(n−k)
λ

− γ(k)
(
1
4
(n− k)kz(n−k) + kz̃(n−k) + z(n−k)

λ

)]
−

n∑
k=0

α(k)
m

[
u

(n−k)
λ − kv(n−k)

2 − 1
2 (n− k)kv2

]
,

A
(n)
2 =

n∑
k=0

[
β

(k)
λ (nz̃(n−k) − 2z(n−k)

λ )

+ 1
2γ

(k)
(
2z̃(n−k) + 1

2 (n− k)z(n−k)
)
+ 2z̃(n)δn,k

]
−

n∑
k=0

α(k)
m

(
v
(n−k)
2 − 1

2kv
(n−k)
k

)
,

A
(n)
k =

n∑
k=0

[
−2β(k)

λ z̃(n−k) + (z(n) − 6c(n))δn,k
]

−
n∑

k=0

α(k)
m v

(n−k)
k . (5.16)

In the above formulae, we have used the following re-
sults for the beta function βλ and the anomalous dimen-
sion γ from a perturbative calculation,

β
(0)
λ = 0, β

(1)
λ = O(h̄),

γ(0) = γ(1) = 0, γ(2) = O(h̄2). (5.17)

Furthermore, we obtain the Callan–Symanzik equation
with local coupling by

m∂mΓn +
∞∑
k=0

β
(k)
λ

∫
d4xλk+1(x)

δ

δλ(x)
Γn

− 1
2

∞∑
k=0

γ(k)
n∑
l=1

λk(xl)Γn =∆dλ · Γn, (5.18)

where the normal product∆dλ is given by
∫
d4x ∆λ(x). In

the constant coupling limit, it will return to the ordinary
Callan–Symanzik equation with the following expansions
of βλ and γ in the coupling constant λ,

βλ =
∞∑
k=0

β
(k)
λ λk+1, γ =

∞∑
k=0

γ(k)λk. (5.19)

In the following, we start to study the conformal trans-
formations of the S-matrix. Similar to the situation with
constant coupling, we obtain the Poincaré transformations
of the S-matrix given by

WT
µ Sn :=

n∑
l=1

pl,µSn =
∫
d4x ∂µλ(x)

δ

δλ(x)
Sn, (5.20)

WL
µνSn :=

n∑
l=1

(
pl,µ

∂

∂pl,ν
− pl,ν ∂

∂pl,µ

)
Sn (5.21)

=
∫
d4x (xµ∂νλ(x)− xν∂µλ(x)) δ

δλ(x)
Sn.

5.3 The dilatation transformation
of the S-matrix

Define the Ward identity for the dilatation transformation
with local coupling by

WDZ[J, λ]

:=
∫
d4x

(
J(x)(1 + xµ∂µ)

δ

δJ(x)

− xµ∂µλ(x) δ

δλ(x)

)
Z[J, λ]

= m∂mZ[J, λ]. (5.22)

The dilatation transformation of the “amputated” S-
matrix element SA,n is given by

WDSA,n :=
n∑
i=1

(1 + pi∂pi)SA,n (5.23)

= −FA
n (x; p)WDGn − 2m2

n∑
l=1

FA
n (x, x̌l; p)Gn,

where WDGn is calculated by
∑n

l=1(1 + xl∂xl
)Gn.

With the Callan–Symanzik equation (5.18), we obtain
the result

WDSA,n =
∞∑
k=0

β
(k)
λ

∫
d4xλk+1(x)

δ

δλ(x)
SA,n (5.24)

+ 1
2Bd

nSA,n − Hd
n

(
γ,

δ

δλ(x)

)
Gn − ∆′

dλ · SA,n,



116 Yong Zhang: Conformal transformations of S-matrix in scalar field theory

Bd
n being given by

Bd
n = n

∞∑
k=0

β
(k)
λ

∫
d4xλk+1(x)

δ

δλ(x)
ln r+

n∑
l=1

∞∑
k=0

γ(k)λk(xl),

(5.25)
and the parameter r being the wavefunction renormaliza-
tion constant in the coupling constant limit; Hd

n

(
γ, δ

δλ

)
is

given by

Hd
n

(
γ,
δ

δλ

)
= FA

n (x; p)
∫
d4x xµ∂µλ(x)

δ

δλ(x)

−
n∑
l=1

FA
n (x, x̌l; p) (5.26)

×
∞∑
k=0

γ(k)
(

1
2✷xl

λk(xl) +
∂λk(xl)
∂xµl

∂

∂xl,µ

)
,

and ∆′
dλ · SA,n is given by

∆′
dλ ·SA,n = 2m2

n∑
l=1

FA
n (x, x̌l; p)Gn+

i
h̄

FA
n (x; p)∆dλ ·Gn.

(5.27)
In the constant coupling limit, the expression (3.54)

can be obtained via the above equation (5.24). The im-
proved Callan–Symanzik operator Ĉ is defined by

Ĉ := m∂m +
∞∑
k=0

β
(k)
λ

∫
λk+1 δ

δλ
− 1

2

∞∑
k=0

γ(k)
∫
λkφ

δ

δφ
,

(5.28)
which is applied to SA,n to obtain

Ĉ SA,n = ∆′
dλ · SA,n + Hd

n

(
γ,
δ

δλ

)
Gn (5.29)

− 1
2 n

∞∑
k=0

β
(k)
λ

∫
d4xλk+1(x)

δ ln r
δλ(x)

SA,n.

5.4 The special conformal transformation
of the S-matrix

Define the Ward identity for the special conformal trans-
formation by

αWKZ[J, λ]

:=
∫
d4x αν(2xνxµ − ηµνx2)

×
(
J(x)∂µ

δ

δJ(x)
− ∂µλ(x) δ

δλ(x)

)
Z

+
∫
d4x (2αx)J(x)

δ

δJ(x)
Z. (5.30)

With the definition (3.65) of the special conformal
transformation of the “amputated” S-matrix element

SA,n, we obtain

αWKSA,n = −
∞∑
k=0

β
(k)
λ

∫
d4x (2αx)λk+1(x)

δ

δλ(x)
SA,n

− 1
2αBk

nSA,n + αHk
n

(
γ,
δ

δλ

)
Gn + α∆′

kλ · SA,n, (5.31)

where αBk
n is given by

αBk
n = n

∞∑
k=0

β
(k)
λ

∫
d4x (2αx)λk+1(x)

δ

δλ(x)
ln r

+
n∑
l=1

∞∑
k=0

γ(k) (2αxl)λk(xl); (5.32)

αHk
n

(
γ, δ

δλ

)
is given by

αHk
n

(
γ,
δ

δλ

)
= FA

n (x; p)
∫
d4xαν(2xνxµ − ηµνx2)∂µλ(x)

δ

δλ(x)

−
n∑
l=1

FA
n (x, x̌l; p)

∞∑
k=0

γ(k) (5.33)

×
(

✷xl
(αxlλk(xl)) +

∂(2αxlλk(xl))
∂xµl

∂

∂xl,µ

)
,

and α∆′
kλ · SA,n is given by

α∆′
kλ · SA,n = 2m2

n∑
l=1

FA
n (x, x̌l; p)(2αxl)Gn

+
i
h̄

FA
n (x; p)α∆kλ ·Gn, (5.34)

with α∆kλ given by

α∆kλ =
∫
d4x (2αx)∆λ(x). (5.35)

The improved Ward identity operator αŴK of the spe-
cial conformal transformation is defined by

αŴK := αWK +
∞∑
k=0

β
(k)
λ

∫
(2αx)λk+1 δ

δλ

− 1
2

∞∑
k=0

γ(k)
∫
(2αx)λkφ

δ

δφ
. (5.36)

Applying it to SA,n, we find

αŴK SA,n = α∆′
kλ · SA,n + αHk

n

(
γ,
δ

δλ

)
Gn (5.37)

− 1
2 n

∞∑
k=0

β
(k)
λ

∫
d4x (2αx)λk+1(x)

δ ln r
δλ(x)

SA,n.
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6 Concluding remarks

In this paper, we followed three approaches to inves-
tigate the behaviour of the S-matrix under the con-
formal transformations. First, one way of studying the
conformal transformations of the S-matrix by means of
the LSZ reduction procedure is proposed. We derive the
Ward identities for the conformal transformations of the
Green functions with the local Callan–Symanzik equa-
tion, then obtain the conformal transformations of the
off-shell S-matrix by calculating the commutators between
Ward identity operators and the Klein–Gordon operator
✷x+m2, and thus represent the conformal transformation
of the S-matrix in terms of the off-shell S-matrix in the
on-shell limit. Second, with charge constructions, we cal-
culate the conformal transformations of the S-matrix in
the functional formalism and realize physical meanings of
the conformal transformations of the off-shell S-matrix in
the on-shell limit. Third, we also calculate the conformal
transformations of the S-matrix in the case of a local cou-
pling. As was shown, the three different types of results
are consistent with each other.
For the dilatation transformation, we obtain the simple

result
n∑
i=1

(1 + pi∂pi)Sn

= βλ ∂λ Sn + 1
2n(βλ∂λ ln r + γ)Sn −∆′

d · Sn

−2m2δ4

(
n∑
i=1

pi

)
n∑
i=1

∂p2
i
S′
A,n |P , (6.1)

which yields in the massless limit

n∑
i=1

(1 + pi∂pi
)Sn = βλ ∂λ Sn. (6.2)

But in the case of the special conformal transformation,
the result seems to be complicated, which suggests that
we have to treat other models such as supersymmetrical
field theories.
In addition, a proof that the dilatation transformation

of the S-matrix has no on-shell poles is given. It is indepen-
dent of the chosen regularization scheme and renormaliza-
tion procedure. It is based on the skeleton expansion, the
Callan–Symanzik equation and the on-shell renormaliza-
tion conditions. Furthermore, the discussion whether the
special conformal transformation of the S-matrix has on-
shell poles or not is given in detail. First, the problem is
simplified by considering the skeleton expansion and using
conservation of energy-momentum. Then the perturbative
calculation is carried out up to two-loop.
Some remarks are in order. Firstly, in the framework of

the algebraic renormalization procedure, consistency con-
ditions among the Ward identity operators [22] can be
used to evaluate coefficients in the Callan–Symanzik equa-
tion with a local coupling. For example, with the help of
the commutativity between the Callan–Symanzik opera-
tor Ĉ and the improved Ward identity operator ŴK of the

special conformal transformation, the coefficient A(n)
1 can

be proved to vanish.
Secondly, the external field q(x) can be introduced to

control the soft breaking,

∆d · Γ =
∫
d4x

δΓ

δq(x)

∣∣∣∣
q(x)=0

. (6.3)

With two external fields λ(x) and q(x), the insertion of the
trace of the energy-momentum tensor can be completely
represented by the action of differential operators, namely

[T ν
ν ]4 · Γ = (6.4)

lim
λ(x)→λ

(
βλ

δ

δλ(x)
− 1

2γφ(x)
δ

δφ(x)
+ 1

2αm
δ

δq(x)

)
Γ,

which can be used to construct charges or simplify calcu-
lations in applying consistency conditions to all orders in
h̄. For example, we can obtain

∂µD̂µ = (6.5)

lim
λ(x)→λ

(
βλ

δ

δλ(x)
− 1

2γφ(x)
δ

δφ(x)
+ 1

2αm
δ

δq(x)

)
,

∂µK̂µν = (6.6)

lim
λ(x)→λ

2xν

(
βλ

δ

δλ(x)
− 1

2γφ(x)
δ

δφ(x)
+ 1

2αm
δ

δq(x)

)
,

where D̂µ is the current operator for the dilatation trans-
formation and K̂µν is the current operator for the special
conformal transformation; see AppendixC. Hence it is in-
teresting to calculate the conformal transformations with
two external fields λ(x) and q(x).
Thirdly, the conformal transformations of the S-matrix

with local coupling have been calculated in the BPHZ
renormalization scheme. Moreover, the S-matrix opera-
tor with local coupling is a basic object in the Epstein–
Glaser scheme. This means that calculating its conformal
transformations is an independent topic. But it is not easy
to solve in the Epstein–Glaser scheme. Here, it can be
obtained by direct calculation, although a lot of delicate
things lie behind all this. It may give some insights into a
similar study within the Epstein–Glaser scheme.
Lastly, since three methods to describe the conformal

transformations of the S-matrix are proposed in this pa-
per, they are expected to be also applied to fermionic field
theories, gauge field theories and supersymmetrical field
theories [25,26]. They will not be much affected by a care-
ful treatment with spin dependences in the fermionic field
theories, gauge fixings in gauge field theories and algebraic
constraints from the Slavnov–Taylor identities in the su-
persymmetrical field theories.
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A The cancellation of on-shell poles
in ∆′

d · Sn

In the on-shell limit, it seems that ∆′
d · SA,n, represented

by

∆′
d · SA,n =∫ n∏
i=1

d4xi ei
∑n

j=1 pj ·xj (ir−1/2)
n

n∑
l=1

2m2

×
n∏

i=1,i �=l

(✷xi
+m2)Gn

+
∫ n∏

i=1

d4xi ei
∑n

j=1 pj ·xj (ir−1/2)n
i
h̄
αm

×
n∏
i=1

(✷xi
+m2)∆d ·Gn, (A.1)

has on-shell poles like 1
p2

i −m2 , pi being the external mo-
menta. In this section we will prove that the poles of this
type do not exist. For simplicity, we only treat the S-
matrix constructed from the connected Green function.
We denote ∆′

d · SA,n|P in the momentum space,

∆′
d · SA,n

∣∣∣∣∣P = (−1)n(ir−1/2)
n
(2π)4δ4

(
n∑
l=1

pl

)

×
{

n∏
i=1

(p2i −m2)
i
h̄
αm∆d · G̃n

−
n∑
l=1

2m2
n∏

i=1,i �=l

(p2i −m2)G̃n


∣∣∣∣∣∣
P

. (A.2)

Applying the Legendre transformation, we expand Gn

and ∆d ·Gn, respectively,

Gn =
i
h̄

∫
G2G2 · · ·G2︸ ︷︷ ︸

n

Γn + · · · , (A.3)

∆d ·Gn =
∫
G2G2 · · ·G2︸ ︷︷ ︸

n

∆d · Γn (A.4)

+n
i
h̄

∫
(∆d ·G2) G2 · · ·G2︸ ︷︷ ︸

n−1

Γn + · · · ,

where the symbol
∫
denotes integration over multi-

variables and the symbol · · · denotes other unwritten
terms which do not affect our proof. Then we only have to
prove that the expression in momentum space, given by

(−1)n(ir−1/2)
n
(2π)4δ4

(
n∑
l=1

pl

)

×
{
i
h̄
αm(p21 −m2)∆d · ∆̃(p1,−p1)− 2m2∆̃(p1)

}
× i
h̄

n∏
i=2

(p2i −m2)∆̃(p2) · · · ∆̃(pn)Γ̃n|P , (A.5)

�G2 �d � �2 G2

Kn

1

2

3

n

�
�G2

Kn

1

2

3

n

Fig. 1. Cancellation of on-shell poles in the dilatation trans-
formation

has no on-shell pole at p21 = m2, in which the symbol
∆̃ stands for the full propagator (the two-point connected
Green function) in momentum space. The employed pro-
cedure has an obvious diagrammatic representation; see
Fig. 1. This figure shows the skeleton expansion of the
Green functions. The empty circle denotes the full propa-
gator G2; the shaded circle denotes the insertion ∆d · Γ2;
the hatched circle denotes the kernel Kn which is either
the 1PI Green function Γn or the product of several 1PI
Green functions. The numbers 1, 2, · · · , n enumerate all
the external lines.
Before completing the proof, two things have to be

prepared. We have realized

2(1− p2∂p2)Γ̃2(p,−p) + (βλ∂λ − γ)Γ̃2(p,−p)
= αm∆d · Γ̃2(p,−p), (A.6)

from which the relation between the residue r and the
insertion into the 1PI two-point Green function ∆d · Γ̃2 is
derived to be

−2m2

r
= αm∆d · Γ̃2|p2=m2 , (A.7)

which is consistent with the normalization conditions
(3.8). The other crucial point is that the residue r can
be determined in the following way:

lim
p2→m2

(p2 −m2)∆̃(p) = ih̄ r, (A.8)

which is equivalent to 1
r = ∂p2 Γ̃2(p,−p)|p2=m2 .
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Now, we can show that the expression (A.5) is zero by
applying the relation between ∆d ·G2 and ∆d · Γ2,

∆d ·G2(x, z) (A.9)

=
∫
d4z1

∫
d4z2G2(x, z1)G2(z, z2)∆d · Γ2(z1, z2).

The proof means that ∆′
d · Sn only includes the contri-

butions from the local integral insertion ∆d into the in-
ternal propagators of the Green function Gn, and hence
the amputation of the external propagators in ∆′

d · Sn is
well-defined.
One remark is stated on our proof. It is based on the

Legendre transformation, the skeleton expansion of the
Green function, the definition of the residue r and the on-
shell renormalization conditions. So it is independent of
the choices of both regularization schemes and renormal-
ization procedures.

B On the on-shell poles in α∆′
k · SA,n |P

Whether α∆′
k ·SA,n contains the on-shell poles or not is a

serious problem in calculating the special conformal trans-
formation of the S-matrix. If this was so, the amputation
of external propagators cannot be well-defined. In the fol-
lowing, we will try to gain some insights. With α∆′

k ·SA,n
given by

α∆′
k · SA,n := 2m2

n∑
l=1

FA
n (x, x̌l; p)(2αxl)Gn

+
i
h̄
αm FA

n (x; p)α∆k ·Gn, (B.1)

it is necessary to judge whether the sum of the two terms

i
h̄

∫
d4x1ei p1x1

(
2m2(2αx1)G2(x1, y1) (B.2)

+
i
h̄
αm(✷x1 +m

2)α∆k ·G2(x1, y1)
)

vanishes in the on-shell limit. The strategy is the same as
in the case of the dilatation transformation. Its diagram-
matic interpretation is also shown in Fig. 1, except that
the symbol ∆d · Γ2 is changed to α∆k · Γ2.
By means of the Fourier transformation, α∆k ·

Γ2(x1, x2) can be represented by

α∆k · Γ2(x1, x2)

=
∫
d4p1
(2π)4

e−ip1(x1−x2)(2αx2)
[ 1
2φ

2(0)
]
2 · Γ̃2(p1,−p1)

+
∫
d4p1
(2π)4

e−ip1(x1−x2) (B.3)

×
(

−2iα ∂
∂p

)[ 1
2φ

2(p)
]
2 · Γ̃2(p1,−p− p1) |p=0,

so the α∆k ·G2(x1, y1) is denoted by

α∆k ·G2(x1, y1)

=
∫
d4p1
(2π)4

ih̄ e−ip1x1

Γ̃2(p1,−p1)
[ 1
2φ

2(0)
]
2 · Γ̃2(p1,−p1)

×
(

−2iα ∂

∂p1

)
ih̄ eip1y1

Γ̃2(p1,−p1)
+
∫
d4p1
(2π)4

ih̄ e−ip1x1

Γ̃2(p1,−p1)
ih̄ eip1y1

Γ̃2(p1,−p1)
(B.4)

×
(

−2iα ∂
∂p

)[ 1
2φ

2(p)
]
2 · Γ̃2(p1,−p− p1) |p=0 .

Hence, in α∆′
k ·SA,n, the term KP containing all pos-

sible on-shell poles is given by

KP :=
(
i h̄n−1αm r

1
2n
)(
2iα

∂

∂p

)
(

n∑
l=1

[ 1
2φ

2(p)
]
2 · Γ̃2(pl,−p− pl)
Γ̃2(pl,−pl)

)
p=0

×Kn(p1, · · · , pn) |p2
l =m2 . (B.5)

Formally taking the massless limit,KP will vanish because
of the vanishing αm.
In the following, for example, the insertion

[ 1
2φ

2(p)
]
2 ·

Γ̃2(p1,−p − p1) is considered. Due to the Lorentz invari-
ance and the subtraction scheme in the BPHZ renormal-
ization procedure, it is obtained from[ 1

2φ
2(p)

]
2 · Γ̃2(p1,−p− p1)

= R(p2, p21,m
2, p · p1)−R(0, 0,m2, 0), (B.6)

where the symbol R stands for the term without subdiver-
gences. So, the problem changes to the one whether the
derivative

∂R(0,m2, p · p1)
∂p · p1 |p=0 (B.7)

vanishes or not, which cannot be exactly solved in a gen-
eral sense at least in a massive scalar field theory. Here it
will be calculated up to two-loop.
Up to order in h̄, there are two non-vanishing Feynman

integrals. The two corresponding Feynman diagrams are
illustrated in Fig. 2.
The first diagram is the tree approximation giving the

constant value; it will vanish when taking the derivative.
The second Feynman integral has the form

ih̄λ
2

d4k
(2 π)4

(DkDp+k −D2
k), (B.8)

Fig. 2. Contributions to KP up to order of h̄
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Fig. 3. Vanishing contributions to KP in order of h̄2

Fig. 4. Non-vanishing contribution to KP in order of h̄2

where the symbols Dk and Dp+k are denoted by

Dk =
1

k2 −m2 , Dp+k =
1

(p+ k)2 −m2 . (B.9)

Applying the derivation action ∂
∂p , then setting p zero, the

second Feynman diagram still contributes zero.
In order of h̄2, there are two types of diagrams, given

in Figs. 3 and 4. First, consider Fig. 3. The first diagram
is similar to the second one in Fig. 2, but it involves the
counterterm as the interaction vertex, therefore also giv-
ing a vanishing result. The second Feynman diagram is
the scoop one including one tadpole, thus giving no con-
tribution. The third one has the Feynman integral with

(ih̄λ)2

4
d4k1
(2 π)4

d4k2
(2 π)4

(Dk1 Dp+k1 −D2
k1
)(Dk2 Dp+k2 −D2

k2
),

(B.10)
which also vanishes in the calculation of KP.
Consider the sunset Feynman diagram in Fig. 4. The

relevant two-loop calculation is carried out and we obtain

(
2iα

∂

∂p

) ( n∑
l=1

[ 1
2φ

2(p)
]
2 · Γ̃2(pl,−p− pl)
Γ̃2(pl,−pl)

)(≤2)
∣∣∣∣∣∣

p = 0,
p2

l = m2

=
1

2!(4π)4

(
1− π2

12

)
h̄2λ2

m2

n∑
l=1

2iαpl
p2l −m2

∣∣∣∣∣
p2

l =m2

.(B.11)

Therefore, in our case, the term KP is approximated
by

KP = O(h̄2). (B.12)

It suggests that in the massive scalar field theory α∆′
k ·

SA,n |P has on-shell poles. In order to make KP van-
ish, there are at least two ways out. The first one is that
complicated field theories have to get involved, such as
supersymmetrical field theories [27,28]. The second one

suggests to redefine the special conformal transformation
of the off-shell S-matrix element SA,n in the on-shell limit

αWKSA,n |P , (B.13)

according to (3.70)

αWKSn = αWKSA,n |P −4 im2
n∑
l=1

αPk
l S

′
A,n |P ,

(B.14)
since αWKSn has to be finite in a physical sense.

C Current constructions
and charge constructions

As a matter of fact, the S-matrix used in our work is de-
fined in the LSZ reduction procedure. With this approach,
the information of the operator formalism can be recov-
ered, such as current constructions, charge constructions
and quantum transformations of quantum fields.
For simplification, the moment constructions of the lo-

cal Ward identity operators can be chosen as follows:

w̃T
µ (x) = ∂µφ(x)

δ

δφ(x)
− 1
4
∂µ

(
φ(x)

δ

δφ(x)

)
, (C.1)

w̃L
µν(x) = xµw̃

T
ν (x)− xνw̃T

µ (x), (C.2)

w̃D(x) = xµw̃T
µ (x), (C.3)

w̃K
ν (x) = (2x

µxν − ηµνx2)w̃T
µ (x). (C.4)

Applying the quantum action principle in the BPHZ
renormalization procedure, the energy-momentum tensor
Tµν can be calculated from

w̃T
µ (x) · Γ = −[∂ν Tµν(x)] · Γ. (C.5)

Then the breaking of the conformal invariance is con-
trolled by the insertion of the trace of the energy-
momentum tensor, namely

w̃DΓ = −∂ν [Dν ] · Γ + [T ν
ν ] · Γ, (C.6)

w̃K
ν Γ = −∂µ [Kµν ] · Γ + 2xν

[
Tµ
µ

] · Γ, (C.7)

where the current Dν is xµTµν for the dilatation transfor-
mation and the current Kµν is (2xνxζ − ηζνx2)Tµζ for the
special conformal transformation.
Define the local Ward identity for the space-time trans-

lation in the generating functional Z[J ] by

w̃T
µ (x)Z[J ]
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:=
(
J(x)∂µ

δ

δJ(x)
− 1
4
∂µ

(
J(x)

δ

δJ(x)

))
Z[J ]

=
i
h̄
∂ν [Tµν ] · Z[J ]. (C.8)

It can be realized in the Green function via

w̃T
µ (x)Gn

=
n∑
l=1

δ(x− xl)∂xµGn(x, x1, · · · , x̌l, · · · , xn)

−1
4

n∑
l=1

∂xµ (δ(x− xl)Gn(x, x1, · · · , x̌l, · · · , xn))

=
i
h̄
∂ν [Tµν ] ·Gn(x1, · · · , xn), (C.9)

where x̌l indicates that xl is missing in the string of vari-
ables. Furthermore, the local Ward identity for space-time
translations in the momentum space is given by

w̃T
µ (p)Gn

= −i
n∑
l=1

(
(pµ + pl,µ)− 1

4
pµ

)
×Gn(p+ pl, p1, · · · , p̌l, · · · , pn)

=
i
h̄
(−ipν)[Tµν(p)] ·Gn(p1, · · · , · · · , pn), (C.10)

which can be transferred into the form

i
h̄
(−ipν)[Tµν(p)] · Sn(p1, · · · , · · · , pn)

= −i
n∑
l=1

(
(pµ + pl,µ)− 1

4
pµ

)(
−ir− 1

2

)n n∏
j=1

(p2j −m2)

×Gn(p+ pl, p1, · · · , p̌l, · · · , pn)|P . (C.11)

In the on-shell limit and in case of p being non-zero and
the right hand side being zero, the conservation of the
energy-momentum tensor is obtained by

pν T̂µν(p) = 0, (C.12)

which is given in coordinate space by

∂ν T̂µν = 0. (C.13)

Hence the four-momentum charge P̂µ is defined as

P̂µ :=
∫
d3x T̂µ0. (C.14)

Here all involved operators are defined in the asymptotic
Hilbert space H satisfying

H = Hin = Hout. (C.15)

Similarly, for the other conformal transformations, the
corresponding expressions can also be set up:

∂aM̂µνa = 0,

∂µD̂µ = T̂ ν
ν ,

∂µK̂µν = 2xν T̂µ
µ , (C.16)

where M̂µνa, D̂µ, and K̂νµ are respectively given by

M̂µνa = xµT̂νa − xν T̂µa, D̂µ = xν T̂µν ,

K̂νµ = (2xνxζ − ηζνx2)T̂µζ . (C.17)

Then the charge Mµν for the Lorentz rotations is denoted
by
∫
d3xM̂µν0 . But the charges for both the dilatation

transformation and for the special conformal transforma-
tion cannot easily be found.
To derive the quantum transformations of the quan-

tum field operator Φ̂, the LSZ reduction procedure can be
applied on both sides of the local Ward identity (C.10),
namely

i
h̄

(
−ir− 1

2

)n n∏
j=2

(p2j −m2)(−ipν)[Tµν(p)]

×Gn(p1, · · · , · · · , pn)|P
= −i

n∑
l=1

(
(pµ + pl,µ)− 1

4
pµ

)(
−ir− 1

2

)n n∏
j=2

(p2j −m2)

×Gn(p+ pl, p1, · · · , p̌l, · · · , pn)|P . (C.18)

In the on-shell limit, the above formalism is related to

−i
(
(pµ + pl,µ)− 1

4
pµ

)
Φ̂(p+ p1)

=
i
h̄
(−ipν)T

(
T̂µν(p)Φ̂(p1)

)
, (C.19)

where the symbol T denotes the time ordering defined in
the coordinate space. Then the action of the local Ward
identity operator for space-time translations on the quan-
tum field operator Φ̂(x) in coordinate space is given by

w̃T
µ (x)Φ̂(x1)

:= ∂xµΦ̂(x)δ
4(x− x1)− 1

4
∂xµ(Φ̂(x)δ

4(x− x1))

=
i
h̄
∂νT

(
T̂µν(x)Φ̂(x1)

)
. (C.20)

Similar equations for the other conformal transforma-
tions can also be obtained by

(xµw̃T
ν (x)− xνw̃T

µ (x))Φ̂(x1) =
i
h̄
∂aT

(
M̂µνa(x)Φ̂(x1)

)
,

(C.21)

xµw̃T
µ (x)Φ̂(x1) (C.22)

=
i
h̄
∂µT

(
D̂µ(x)Φ̂(x1)

)
− i
h̄

T
(
T̂ ν
ν (x)Φ̂(x1)

)
,

(2xνxµ − ηµνx2)w̃T
µ (x)Φ̂(x1) (C.23)

=
i
h̄
∂µT

(
K̂µν(x)Φ̂(x1)

)
− i
h̄
2xνT

(
T̂µ
µ (x)Φ̂(x1)

)
.
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The quantum transformations of the quantum field Φ̂ for
space-time translations and Lorentz rotations are obtained
by integrating ∫ x0+ε

x0−ε

dx0
1

∫
d3x1 (C.24)

on both sides of the above equations, (C.20) and (C.21),
namely

δTµ Φ̂ := ∂µΦ̂ =
i
h̄
[P̂µ, Φ̂],

δLµν Φ̂ := (xµ∂ν − xν∂µ)Φ̂ = i
h̄
[M̂µν , Φ̂]. (C.25)

In the cases of the dilatation transformation and the
special conformal transformation, the quantum transfor-
mations in the free (or asymptotically free) field theory
are constructed by

δDφ̂in(x) := (1 + x∂x)φ̂in(x) =
i
h̄
[D̂, φ̂in(x)],

δKν φ̂in(x) :=
(
(2xνxµ − ηµνx2)∂µ + 2xν

)
φ̂in(x)

=
i
h̄
[K̂ν , φ̂in(x)], (C.26)

where D̂ is the charge for the dilatation transformation
and K̂ν is the charge for the special conformal transfor-
mation.
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